Chagas disease (CD) is endemic in Central and South America, Mexico and even in some areas of the United States. However, cases have been increasingly recorded also in non-endemic countries. The estimated number of infected people in Europe is in a wide range of 14000 to 181000 subjects, mostly resident in Spain, Italy and the United Kingdom.
METHODOLOGY/PRINCIPAL FINDINGS
Retrospective, observational study describing the characteristics of patients with CD who attended the Centre for Tropical Diseases (Negrar, Verona, Italy) between 2005 and 2013. All the patients affected by CD underwent chest X-ray, ECG, echocardiography, barium X-ray of the oesophagus and colonic enema. They were classified in the indeterminate, cardiac, digestive or mixed category according to the results of the screening tests. Treatment with benznidazole (or nifurtimox in case of intolerance to the first line therapy) was offered to all patients, excluding the ones with advanced cardiomiopathy, pregnant and lactating women. Patients included were 332 (73.9% women). We classified 68.1% of patients as having Indeterminate Chagas, 11.1% Cardiac Chagas, 18.7% as Digestive Chagas and 2.1% as Mixed Form. Three hundred and twenty-one patients (96.7%) were treated with benznidazole, and most of them (83.2%) completed the treatment. At least one adverse effect was reported by 27.7% of patients, but they were mostly mild. Only a couple of patients received nifurtimox as second line treatment.
CONCLUSIONS
Our case series represents the largest cohort of T. cruzi infected patients diagnosed and treated in Italy. An improvement of the access to diagnosis and cure is still needed, considering that about 9200 infected people are estimated to live in Italy. In general, there is an urgent need of common guidelines to better classify and manage patients with CD in non-endemic countries.
Since 2010, WHO has recommended oral cholera vaccines as an additional strategy for cholera control. During a cholera episode, pregnant women are at high risk of complications, and the risk of fetal death has been reported to be 2-36%. Due to a lack of safety data, pregnant women have been excluded from most cholera vaccination campaigns. In 2012, reactive campaigns using the bivalent killed whole-cell oral cholera vaccine (BivWC), included all people living in the targeted areas aged ≥ 1 year regardless of pregnancy status, were implemented in Guinea. We aimed to determine whether there was a difference in pregnancy outcomes between vaccinated and non-vaccinated pregnant women.
METHODS AND FINDINGS
From 11 November to 4 December 2013, we conducted a retrospective cohort study in Boffa prefecture among women who were pregnant in 2012 during or after the vaccination campaign. The primary outcome was pregnancy loss, as reported by the mother, and fetal malformations, after clinical examination. Primary exposure was the intake of the BivWC vaccine (Shanchol) during pregnancy, as determined by a vaccination card or oral history. We compared the risk of pregnancy loss between vaccinated and non-vaccinated women through binomial regression analysis. A total of 2,494 pregnancies were included in the analysis. The crude incidence of pregnancy loss was 3.7% (95%CI 2.7-4.8) for fetuses exposed to BivWC vaccine and 2.6% (0.7-4.5) for non-exposed fetuses. The incidence of malformation was 0.6% (0.1-1.0) and 1.2% (0.0-2.5) in BivWC-exposed and non-exposed fetuses, respectively. In both crude and adjusted analyses, fetal exposure to BivWC was not significantly associated with pregnancy loss (adjusted risk ratio (aRR = 1.09 [95%CI: 0.5-2.25], p = 0.818) or malformations (aRR = 0.50 [95%CI: 0.13-1.91], p = 0.314).
CONCLUSIONS
In this large retrospective cohort study, we found no association between fetal exposure to BivWC and risk of pregnancy loss or malformation. Despite the weaknesses of a retrospective design, we can conclude that if a risk exists, it is very low. Additional prospective studies are warranted to add to the evidence base on OCV use during pregnancy. Pregnant women are particularly vulnerable during cholera episodes and should be included in vaccination campaigns when the risk of cholera is high, such as during outbreaks.
Noma (cancrum oris) is an ancient but neglected and poorly understood preventable disease, afflicting the most disenfranchised populations in the world. It is a devastating and often fatal condition that requires urgent and intensive clinical and surgical care, often difficult to access as most cases of noma occur in resource-limited settings. We conducted a scoping review of the literature published on noma to understand the size and scope of available research on the disease and identify research gaps that need to be addressed to evolve our understanding of how to address this disease.
METHODS
We searched 11 databases and collected primary peer reviewed articles on noma in all languages, the final search was conducted on 24th August 2021. The oldest manuscript identified was from 28th March 1843 and the most recently published manuscript was from 3rd June 2021. Search terms included cancrum oris and noma. Data was extracted using a standardised data extraction tool and key areas of interest were identified. The Preferred Reporting Items for Systemic review and Meta-Analyses requirements were followed.
RESULTS
The review included 147 articles, the majority of the studies (n = 94, 64%) were case reports. Most manuscripts (n = 81, 55%) were published in the 2000s, 49 (33%) were from the 1900s and 17 (12%) from the 1800s. The main areas of interest identified were the history and epidemiology of the disease, noma's clinical progression and aetiology, treatment regimens, mortality rates and the risk factors for the development of noma.
CONCLUSIONS
Noma has been reported in the literature for hundreds of years; however important gaps in our understanding of the disease remain. Future research should focus on determining the burden and distribution of disease; the true mortality rate, pathogenic cause(s) and the factors that influence prognosis and outcomes after treatment.
BACKGROUND
Between December 2015 and July 2016, a yellow fever (YF) outbreak affected urban areas of Angola and the Democratic Republic of the Congo (DRC). We described the outbreak in DRC and assessed the accuracy of the YF case definition, to facilitate early diagnosis of cases in future urban outbreaks.
METHODOLOGY/PRINCIPAL FINDINGS
In DRC, suspected YF infection was defined as jaundice within 2 weeks after acute fever onset and was confirmed by either IgM serology or PCR for YF viral RNA. We used case investigation and hospital admission forms. Comparing clinical signs between confirmed and discarded suspected YF cases, we calculated the predictive values of each sign for confirmed YF and the diagnostic accuracy of several suspected YF case definitions. Fifty seven of 78 (73%) confirmed cases had travelled from Angola: 88% (50/57) men; median age 31 years (IQR 25–37). 15 (19%) confirmed cases were infected locally in urban settings in DRC. Median time from symptom onset to healthcare consultation was 7 days (IQR 6–9), to appearance of jaundice 8 days (IQR 7–11), to sample collection 9 days (IQR 7–14), and to hospitalization 17 days (IQR 11–26). A case definition including fever or jaundice, combined with myalgia or a negative malaria test, yielded an improved sensitivity (100%) and specificity (57%).
CONCLUSIONS/SIGNIFICANCE
As jaundice appeared late, the majority of cases were diagnosed too late for supportive care and prompt vector control. In areas with known local YF transmission, a suspected case definition without jaundice as essential criterion could facilitate earlier YF diagnosis, care and control.
Worldwide, it is estimated that snakes bite 4.5-5.4 million people annually, 2.7 million of which are envenomed, and 81,000-138,000 die. The World Health Organization reported these estimates and recognized the scarcity of large-scale, community-based, epidemiological data. In this context, we developed the "Snake-Byte" project that aims at (i) quantifying and mapping the impact of snakebite on human and animal health, and on livelihoods, (ii) developing predictive models for medical, ecological and economic indicators, and (iii) analyzing geographic accessibility to healthcare. This paper exclusively describes the methodology we developed to collect large-scale primary data on snakebite in humans and animals in two hyper-endemic countries, Cameroon and Nepal.
METHODOLOGY/PRINCIPAL FINDINGS
We compared available methods on snakebite epidemiology and on multi-cluster survey development. Then, in line with those findings, we developed an original study methodology based on a multi-cluster random survey, enhanced by geospatial, One Health, and health economics components. Using a minimum hypothesized snakebite national incidence of 100/100,000/year and optimizing design effect, confidence level, and non-response margin, we calculated a sample of 61,000 people per country. This represented 11,700 households in Cameroon and 13,800 in Nepal. The random selection with probability proportional to size generated 250 clusters from all Cameroonian regions and all Nepalese Terai districts. Our household selection methodology combined spatial randomization and selection via high-resolution satellite images. After ethical approval in Switerland (CCER), Nepal (BPKIHS), and Cameroon (CNERSH), and informed written consent, our e-questionnaires included geolocated baseline demographic and socio-economic characteristics, snakebite clinical features and outcomes, healthcare expenditure, animal ownership, animal outcomes, snake identification, and service accessibility.
CONCLUSIONS/SIGNIFICANCE
This novel transdisciplinary survey methodology was subsequently used to collect countrywide snakebite envenoming data in Nepal and Cameroon. District-level incidence data should help health authorities to channel antivenom and healthcare allocation. This methodology, or parts thereof, could be easily adapted to other countries and to other Neglected Tropical Diseases.